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Exact multipoint and multitime correlation functions of a one-dimensional model
of adsorption and evaporation of dimers
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In this work, we provide a method that allows us to compute exactly the multipoint and multitime correlation
functions of a one-dimensional stochastic model of dimer adsorption evaporation with random~uncorrelated!
initial states. In particular, explicit expressions of the two-point noninstantaneous/instantaneous correlation
functions are obtained. The long-time behavior of these expressions is discussed in detail and in various
physical regimes.
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One-dimensional reaction-diffusion~RD! processes ofin-
teracting particleshave been extensively studied in the la
decade because of their relevance as examples of stro
correlated nonequilibrium systems and their connection w
experimental situations@1–4#.

Among the RD systems, the ‘‘diffusion-limited with pa
annihilation and creation’’~DPAC! model @5–15# plays a
particular role. In fact it is one of the rare nonequilibriu
models for which it has been possible, in some special ca
to compute somedynamical correlation functions. In addi-
tion this model carries valuable information for various e
perimental situations where particles diffuse and dimer
be adsorbed/evaporated@1,2#. Despite the interest in the
DPAC model, not all the desirable information on the cor
lation functions was available so far. In particular consid
ably less results are available for the~complete! DPAC
model than for the ‘‘diffusion-limited pair annihilation’
~DPA! model ~where there is no pair creation!.

Recently, there has been a regain of interest for the st
of the DPAC model because its possible application in v
ous fields such as the experimental study of the photogro
properties of long-lived midgap absorption band in aMX
chain@2# and in interdisciplinary studies@3#. In particular, it
has been shown that the autocorrelation functions of
DPAC model provide valuable information on the relaxati
of biological dimer adsorption@3#. In this work we consider
the ~free fermion! DPAC and DPA model and obtain resul
that remained inaccessible so far. In particular, we explic
compute the exact and complete expression of the nonins
taneous two-point correlation functions for random init
conditions and then analyze the long-time behavior of
latter.

We consider a periodic lattice ofL sites~without restric-
tion, L is assumed to beeven! on which an even number o
~classical! particles interact. Each site is either empty or o
cupied by a particle at most~because of thehard-core inter-
action!. When a particle and a vacancies are adjacent to e
other, the particle canjump to the right with a rateh8 or to
the left with a rateh. When two particles are adjacent, the
canannihilate in pairswith a ratee. In addition, when two
vacancies are adjacent, apair of particles can be created
with rate e8. We now adopt the so-calledstochastic Hamil-
tonian formalism~see, e.g.,@4# and references therein!. To do
this, at each of theL lattice sites, we associate to a partic
~vacancy! a spin-12 down ~up!. In so doing the master equa
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tion governing the dynamics of the model can formally
rewritten as an imaginary-time Schro¨dinger equation for a
quantum spin chain: (]/]t)uP(t)&52HuP(t)&, where
uP(t)&5($n%P($n%,t)u$n%& describes the state of the syste
at time t ~the sum runs over all the 2L configurations$n%).
Performing a standard Jordan-Wigner transformation
then a Fourier transformation, thestochastic Hamiltonian
can be recast in afermionic representation@4–12#. We also
define the ‘‘left vacuum’’^x̃u[($n%^$n%u. The probability
conservation yieldŝx̃uH50.

Exact solution of the DPAC model is possible in thefree-
fermion case@4–12#, and therefore, withg[e1e82(h
1h8), one has to imposeg50.

Hereafter, we always consider that the constraintg50 is
fulfilled. In this case, the stochastic Hamiltonian reads

H5 (
q.0

@v~q!aq
†aq1v* ~q!a2q

† a2q

12 sinq~eaqa2q1e8a2q
† aq

†!#1e8L, ~1!

where aq
† and aq are usual fermion operators. In additio

v(q)[ c̃2b cosq1iv sinq, with b[e1e8, c̃[e2e8, v
[h82h, andq56p(2l 21)/L, l 51,2, . . . ,L/2.

We consider translationally invariant and uncorrelat
random initial statesur0& with an even numberN of par-
ticles, of densityr05N/L, i.e.,

ur0&5S 12r0

r0
D ^ L

.

From the fermion reformulation, an important property of t
left vacuum follows:̂ x̃uaq

†5cot(q/2)^x̃ua2q @4,8,9#.
The free-fermioncharacter of the stochastic Hamiltonia

~1! allows the computation the following zero-time correl
tors @9#, with m[r0 /(12r0):

^x̃uaq8aqur0&[^aq8aq&~0!5
m2 cot~q/2!

11m2 cot2~q/2!
dq,2q8 ,

^aq1
aq2

•••aq2n21
aq2n

&~0!5
1

n! (
p

S~p!^aqp(1)
aqp(2)

&

3~0!•••^aqp(2n21)
aqp(2n)

&~0!,

~2!
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MAURO MOBILIA PHYSICAL REVIEW E 65 046127
where the sum is over all the permutationsp of the in-
dices $q1 ,q2 , . . . ,q2n%, with the constraints p(1)
,p(2), . . . ,p(2n21),p(2n). Each permutationp has a
signatureS(p).

It is advantageous at this point to introduce the ‘‘pseu
fermion’’ operators @6# jq5a21 cosuqaq1a sinuqa2q

† and
jq

15a cosuqaq
†1a21 sinuqa2q , with u2q52uq . Although

they arenot adjointeach other@6#, these operators fulfill the
canonical anticommutation relation$jq ,jq8

1 %5dq,q8 . The

probability conservation yieldŝx̃ujq
150 @6#.

It has been shown@6# that if one chooses the following
parameters tan(2uq)52Aee8sinq/(bcosq2c̃); a25Ae8/e,
the stochastic free-fermion Hamiltonian~1! is diagonal in
the pseudo-fermion representation and readsH
5(qlqjq

1jq , with lq5b2 c̃ cosq1iv sinq. Because of this
diagonal representation, the pseudofermion operators ev
according tojq(t)5e2lqtjq(0) andjq

1(t)5elqtjq
1(0).

Using the fact that the pseudo-fermion operatorsjq are
linear combinationof fermion operatorsaq andaq

† , and us-
ing the expression~2! as well as the property of the le
vacuum, it follows that

^jqjq8&~0!5
cosuq cosuq8

a2
^aqaq8&~0!

1a2 sinuq sinuq8^a2q
† a2q8

† &~0!

1sinuq8 cosuq^aqa2q8
† &~0!

1sinuq cosuq8^a2q
† aq8&~0!. ~3!

For the sequel it is useful to computêjqjq8&(0)
[^x̃ujqj2qur0&dq82q . Therefore, we introduce the follow
ing function:

f ~q![^jqj2q&~0!

5nq2
m2enq cos2~q/2!

S 11
m2e

e8
nq

2D Re~lq!

@112nq
212/nq

2#,

where nq[Ae8/e cot~q/2!. ~4!

One can also check that

^jq1
•••jq2n

&~0!5
1

n! (
p

S~p!^jqp(1)
jqp(2)

&

3~0!•••^jqp(2n21)
jqp(2n)

&~0!, ~5!

where we adopted the same notations as in Eq.~2!.
Let us now sketch a four-step procedure that allows

to compute explicitly the multipoint and multitime
correlation functions ^nj 1

(t1)•••nj m21
(tm21)nj m

(tm)&

[^x̃unj 1
e2H(t12t2)

•••nj m21
exp@2H(tm212tm)#njm

e2Htmur0&.
~i! One first has to write the expression of the correlat

functions in the Fourier space.
04612
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^nj 1
~ t1!•••nj m

~ tm!&5 (
q1 ,q18 , . . . ,qm ,qm8

exp@ i ~q12q18! j 1

1•••1 i ~qm2qm8 ! j m#

3^aq1

† ~ t1!aq
18
~ t1!•••aqm

† ~ tm!aq
m8
~ tm!&.

~6!

~ii ! One has then to rewrite the expression~6! in the
pseudofermionlanguage. This was achieved with the help

aq
†aq85cosuq cosuq8jq

1jq82cosuq sinuq8jq
1j2q8

1

2sinuq cosuq8j2qj2q81sinuq sinuq8j2qj2q8
1 .

~7!

~iii ! Using the fact thatH is diagonal in the ~pseudo-
fermion! representation@with Eq. ~7!#, one extracts the time
dependence of terms appearing in the pseudofermion rew
ten expression~6!. As an example, we have

^jq1
~ t1!jq

18
~ t1!•••jqm

~ tm!jq
m8
~ tm!&

5exp@2~lq1
1lq

18
!t12•••2~lqm

1lq
m8
!tm#

3^jq1
jq

18
•••jqm

jq
m8
&~0!. ~8!

~iv! Finally, the zero-time correlation functions of pseud
fermion operators appearing on the right-hand side~rhs! of
~6!, after the steps~i!–~iii !, are computed with help of the
Wick factorization~5! and usinĝ x̃ujq

150.
This general four-step procedure provides a system

method to obtain explicitly, starting from homogeneous ra
dom initial conditions, the multipoint and multitime correla
tion functions of the free-fermion model under considerat
here. It is, however, important to notice that the computat
of each of these quantities leads to rather complicated te
nical difficulties. Let us mention that using the domain-w
duality and with help of the generating function studied
@10#, we can compute the stationary multipoint correlati
functions of the DPAC model from the spin-spin correlati
functions of the one-dimensional Ising model with a gen
alized~biased! Glauber’s dynamics@6,10,16#. In fact we can
show (j m.•••. j 1) that ^nj 1

•••nj m
&(`)5@r(`)#m @16#,

where r(`)5Ae8/(Ae1Ae8) is the stationary density o
particles. In addition, for a homogeneous system with ini
densityr051/2 of particles, because of the quadratic form
the generating function, the expressions of spin-spin corr
tion functions of the dual of the DPAC model are Pfaffia
@10,16#. In this case it is, therefore, possible, via the doma
wall duality @4,10#, to sort out the technical complication
and explicitly compute the instantaneous multipoint corre
tion functions. As an example for the DPA model (e5h
1h8, e850), the long-time behavior (bt@1) of the three-
point correlation functions reads 8^nj (t)nj 1r 1

(t)nj 1r 2
(t)&

'„118$r 1
21r 1r 2@5(r 22r 1)21#%…/1280p( c̃t)3, with r 2

.r 1 @16#.
7-2
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Because of the general technical problems inherent to
computation of the correlation functions, the abov
mentioned systematic four-step procedure is, in particu
useful to take into account random initial conditions, whi
affect the long-time dynamics of the nonuniversal relaxat
~when all the ratesh, h8, e ande8 are.0, see below!.

To illustrate the difficulties that appear in computing t
multipoint and multitime correlation functions~from uncor-
related but random initial states!, as well as their importance
one can point out the work of Derrida and Zeitak@17#, where
these authors obtained the universal distribution of dom
sizes of one-dimensional Potts model with zero-tempera
Glauber dynamics. This was achieved using the propertie
coalescing random walkers to compute the probability
having the same value at timet for N spins located atN
distinct and ordered sites, which is related to the distribut
of domain sizes. The authors also studied the domain-w
dynamics and, thus, considered the following~free-fermion!
RD modelAB↔BA, AA→A, andAA→B, with reaction
rates 1, (q22)/(q21), and 1/(q21), respectively. For this
RD model, with random~but uncorrelated! initial conditions,
the authors of@17# computed the density of particles and t
instantaneous two-point correlation functions. It has to
noticed that there exists a similarity transformation~see, e.g.,
@4#, and references therein! that maps the DPA model studie
here~with e850) onto the RD model considered in@17#.
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Another important problem where the~stationary! multi-
point correlation functions of a free-fermion model play
relevant role is the computation, for theq-state Potts mode
in the zero-temperature Glauber dynamics, of the exact

sistence exponent that gives the fraction of spinsr̃L(q),

which have never flipped@18,19#. To computer̃L(q), the
authors mapped the problem onto an exactly solvable~free
fermion! RD model: AB↔BA ~with reaction rate 1) and
AA→A ~with reaction rate 2). In addition it is assumed th
a ‘‘source’’ ensures that the origin of the~periodic! lattice is
always occupied. Starting from an uncorrelated but rand
initial state ~with the initial site always occupied! denoted

uP9(0)&, the problem of findingr̃L(q) reduces to the com

putation of the following multipoint correlator@18#: r̃L(q)

5 limt→`^0u(11aL)•••(11a1)e2H8tuP9(0)&, where the
aj ’s are fermion operators,u0& is the vacuum (aj u0&50) and
H8 is the stochastic Hamiltonian associated to RD mo
considered in@18,19#.

To be specific we now focus on the computation of t
connected noninstantaneous two-point correlation functi
of the DPAC model for random initial conditionsur0&.

Following the above-mentioned four-step procedure@~i!–
~iv!#, adopting the notationfq[b2 c̃ cosq, we obtain, in the
thermodynamic limit (L→`):
Cr~ t,t0![^nj 1r~ t1t0!nj~ t0!&2r~ t1t0!r~ t0!

5ee8S E
0

pdq

p
sin@qr2vt sinq#

sinq

fq
e2fqtD 2

14ee8S E
0

pdq

p
cos@qr2vt sinq#

3
sin2~q/2!

fq
e2fqtD S E

0

pdq

p
cos@qr2vt sinq#

cos2~q/2!

fq
e2fqtD 12e8Aee8S E

0

pdq

p
sin@qr2vt sinq#

sinq

fq
e2fqtD

3S E
0

pdq

p
sin@qr2vt sinq#

cos2~q/2!

fq
f ~q!e2fq(t12t0)D 2Aee8S E

0

pdq

p
cos@qr2vt sinq#

c̃2b cosq

fq
e2fqtD

3S E
0

pdq

p
cos@qr2vt sinq#

sinq

fq
f ~q!e2fq(t12t0)D 22eAee8S E

0

pdq

p
sin@qr2vt sinq#

sinq

fq
e2fqtD

3S E
0

pdq

p
sin@qr2vt sinq#

sin2~q/2!

fq
f ~q!e2fq(t12t0)D 24ee8S E

0

pdq

p
sin@qr2vt sinq#

cos2~q/2!

fq

3 f ~q!e2fq(t12t0)D S E
0

pdq

p
sin@qr2vt sinq#

sin2 ~q/2!

fq
f ~q!e2fq(t12t0)D 2ee8S E

0

pdq

p
cos@qr2vt sinq#

3
sinq

fq
f ~q!e2fq(t12t0)D 2

. ~9!
s
oint

e
-

In this expression r(t)5Ae8/(Ae1Ae8)
2Aee8*0

p(dq/p)@sin(q)/fq#f(q)e22fqt designates the~trans-
lationally invariant! density of particles at timet. The latter
has been previously studied~for the initial statesur0&) in
@10#.
Equation~9! is the main result of this work and provide
the complete expression of the noninstantaneous two-p
correlation functions of the~free-fermion version of the!
DPAC model. From the latter, it is clear that on
can also obtain theinstantaneoustwo-point connected corre
7-3
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MAURO MOBILIA PHYSICAL REVIEW E 65 046127
lation functions Cr(t50,t0.0), and one can check, a
expected from the general properties of the DPAC model@8#,
that the latter do not depend on the biasv. In addition,
it is clear that the expression~9! also includes the instanta
neous and noninstantaneous connected two-point correla
functions of the DPA model, wheree850 and b5 c̃.0.
It is worthwhile to notice that the noninstantaneous corre
tion functions~9! @with t.0 andvÞ0# depend on thesign
of r : Cr(t,t0 ;v)5C2r(t,t0 ;2v). Conversely, theinstanta-
neouscorrelation functions@with t50 andt0.0 in Eq. ~9!#
do not depend on thesign of r. Let us also stress the fac
that setting in Eq.~9! m5` ~i.e., r051), m50 ~i.e., r0
50), or m51 ~i.e., r051/2), we recover results obtained
@6–12#.

To proceed with a long-time study of the expression~9!,
we have carried out a systematic asymptotic expansion o
integrals appearing in Eq.~9!, in which the smallq regime of
integration dominates. Hereafter, we analyze two differ
regimes and distinguish the case with pair creation~i.e., with
e8.0 andc̃Þ0) from the case with only~asymmetric! dif-
fusion and pair annihilation~i.e., with e850 ande.0). The
cases wherec̃50 ~i.e., e5e8, h5h8, and e5e8, h1h8
52e) have already been studied in@6#.

Regime 1~i! We first consider the case wheree8.0 and
e.0 in the regime whereet,et0@1 ande8t,e8t0@1 @with
c̃.0#. In this situation the main contribution to the noni
stantaneous correlation function arises from the second
on the rhs of Eq.~9!. We, thus, obtain (vÞ0, c̃.0)

Cr~ t,t0!'
e~12u!e2u24e8t

16pe8~ c̃t !2
, u[~r 2vt !2/ c̃t. ~10!

It is clear from Eq.~10! that in this regime the late behavio
of the noninstantaneous correlation functionsCr(t,t0) only
depends on the timet ~and not on t0). We notice the
nontrivial effect of the biasvÞ0 through the paramete
u. In the absence of the bias and forr ,` ~i.e., for the
autocorrelation functions! we obtain: Cr(t,t0 ;v50)'(e/
32pe8)$exp@24e8t#/( c̃t)2%.

In this regime we now focus on the long-time behavior
the instantaneouscorrelation functionsCr(t) ~obtained set-
ting t50 in Eq. ~9! and relabelingt0 as the variablet). The
casesr051 and r050 having been studied previous

@Cr(t;r050,1)}e24e8tt2n8, n853/2 for r051 andn851/2
for r050 @6,12##, here we focus on the case of random in
tial states, i.e., with 0,m,` @and r0Þr(`)5Ae8/(Ae8
1Ae), which would correspond to thetrivial case where
f (q)[0#. The main contribution toCr(t) comes from the
third and fourth term on the rhs of Eq.~9!. Introducing the
parameters

4A0[2Ae/e8~12z!2z r 21; B0[2~12z2!z r 21;

4C0[Ae8/e~11z!2z r 21; z[
Ae2Ae8

Ae1Ae8
, ~11!

we obtain (r ,`)
04612
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Cr~ t !'
pe24e8tF~m,r ,e,e8!

4~p c̃t !3/2
, ~12!

where the rather complicated expression of the amplit
F(m,r ,e,e8) reads

F~m,r ,e,e8!5
A02C0

4m2Aee85
$2m2~ee8!3/222e82Aee8~mr !2

1ee8~Ae83/e1m2@2r 2Ae83/e23Aee8# !%

2
B0r

12ee82m2
$6m2~ee8!3/2

2m2~2r 211!e82Aee81ee8~3Ae83/e

1m2@~2r 211!Ae83/e29Aee8# !%. ~13!

It is remarkable that conversely to theinstantaneouscor-
relation functions~12!, which amplitude~13! depends on the
initial state through the parameter 0,m,`, the long-time
behavior of the noninstantaneous correlation functions~12!
do not depend onr0. This is due to the fact that the secon
term of Eq.~9! doesnot depend onf (q).

Regime 1~ii ! Another interesting asymptotic regime to in
vestigate is the one first studied by Torney and McConn
@15#, where one considers initially very diluted systems, i.
r0'm!1, but keeps the productser0

2t, er0
2t0 , e8r0

2t,
e8r0

2t0 fixed and finite, withet,et0@1 ande8t,e8t0@1 @and

c̃.0#.
In this regime, the noninstantaneous two-point correlat

functionsCr(t,t0) are still dominated by the second term
Eq. ~9! and, thus, the asymptotic (vÞ0) decay ofCr(t,t0) is
still given by Eq.~10!.

The situation is, however, different for theinstantaneous
correlation functions@because the third and fourth term o
Eq. ~9! depend onf (q)#. With help of Eq.~11!, we obtain
(r ,`)

Cr~ t !'r0
3e24e8tG~r0 ,r ,e,e8!F 1

2~r0
2p c̃t !1/2

2e4r0
2c̃terfc~2r0Ac̃t !G , ~14!

where erfc(z) denotes the usual complementary error fun
tion. The amplitudeG(r0 ,r ,e,e8) has the following form:

G~r0 ,r ,e,e8![~A02C0!@r0
2224r 21e/e8#

2B0Ae8/e@r /r0
2210r ~2r 211!2Ae/e8#.

~15!

We now pass to the case of the DPA model, wheree8

50 and b5 c̃5e.0. Again, we distinguish two differen
regimes.
7-4
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Regime 2~i! We first consider the regime wherebt@1 and
bt0@1. In this situation, the main contribution to the lon
time dynamics arises from the fourth and the last terms
Eq. ~9! and we obtain

Cr~ t,t0 ;e850!'

expF2
~r 2vt !2

bt

t01t

2t01t G
2pbAt~ t12t0!

3S 12A t

t12t0
e[ ~r 2vt)2/bt#t0/2t01tD .

~16!

It has to be noticed that, according to Eq.~16!, when r .0
andv.0 ~or, r ,0 andv,0), Cr(t,t0) has a local maximum
~a ‘‘peak’’! at time tp[r /v. Whenbt@bt0@1, we recover
the result@7,11# Cr(t,t0 ;e850)'t0 exp@2(r2vt)2/bt#/2pbt2.

In this regime, the main contribution to theinstantaneous
correlation function arises from the last term of Eq.~9!, and
we obtain the following result:

Cr~ t;e850!'21/4pbt, ~17!

where the minus sign manifests the fact that the long-t
dynamics of the DPA model is dominated byanticorrelation,
due to the pair annihilation of the particles. The results~16!
and ~17! and the fact that the latter donot depend onr0
confirm, for random initial case, the universal character
the DPA model in this regime.

Regime 2~ii ! We now consider the low-density regime
the DPA model, wherer0'm!1 andet,et0@1, with er0

2t
ander0

2t0 finite. Also in this regime the main contribution t
Cr(t,t0 ;e850) arises from the fourth and the last terms
Eq. ~9! and one has the long-time behavior (v50 and r
,`)

Cr~ t,t0 ;e850!'r0 exp@2r0
2b~ t12t0!#

3erfc@2r0Ab~ t01t/2!#H 1

A2pbt

2r0 exp@2r0
2b~ t12t0!#

3erfc@2r0Ab~ t01t/2!#J . ~18!

For theinstantaneouscorrelation functions, we obtain th
following long-time behavior:

Cr~ t;e850!'2r0
2e8r0

2bt@erfc~2r0Abt!#2, ~19!
e,

K.

04612
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where theanticorrelatedcharacter of the DPA model clearl
appears.

Despite the fact that the parameterc̃5e2e8 can take
negative values, so far we have always considered the

where c̃.0. With help of the similarity transformationB
5) j 51

L s j
x , wheres j

x is the usual Pauli’s matrix acting on th

site j, we show that the case wherec̃,0 is directly related to

the one wherec̃.0. In fact, according toB, the ~free fer-

mion! DPAC stochastic HamiltonianH5H(b,c̃,v) is

mapped ontoBH(b,c̃,v)B 215H(b,2 c̃,2v) and the initial
state ur0& is mapped ontoBur0&5u12r0&. Therefore, we
haveCr(t,t0)b,2 c̃,2v;r0

5Cr(t,t0)b,c̃,v;12r0
.

In summary, in this work we sketch a four-step procedu
that allows the explicit computation of the multipoin
and multitime correlation functions of the free-fermio
DPAC model starting from random~uncorrelated! initial
states. We then specifically compute the noninstantane
instantaneous two-point correlation functions in the prese
as well as in the absence of the pair-creation term. When
the reaction rates are positive, the dynamics turns out to
nonuniversal and the long-time relaxation is exponen
~with a subdominant a power-law factor!: the amplitude of
the instantaneous two-point correlation functions depends
the initial densityr0 and is explicitly determined. In the
absence of the pair creation, i.e., whene850 and h1h8
5e.0, the dynamics turns out to be universal~in the regime
wherer0 is finite andbt@1, bt0@1) and there is a power
law relaxation. The effect of the biasv5h82hÞ0, only
appears in the noninstantaneous correlation functions
can be absorbed~for e8>0) in a Galilean transformation, a
noticed in @7,11# in considering the DPA model~in these
previous works,e850).

To close this work, it is natural to wonder what is th
effect on the dynamics of the restrictiong50. In fact, it is
by now well established on the basis of numerous consis
numerical results@3,6,11,14#, and from comparison with ex
periments@1,2#, that the results obtained for the free-fermio
version of the DPAC model give aqualitativepicture that is
still valid when gÞ0. One can, therefore, expect that th
results obtained in this work could have a general valid
and, in particular, a direct relevance for recent interdiscip
nary studies@3#.

We are grateful to P.-A. Bares, M. Michalakis, and
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