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Exact multipoint and multitime correlation functions of a one-dimensional model
of adsorption and evaporation of dimers
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In this work, we provide a method that allows us to compute exactly the multipoint and multitime correlation
functions of a one-dimensional stochastic model of dimer adsorption evaporation with réndconrelateg
initial states. In particular, explicit expressions of the two-point noninstantaneous/instantaneous correlation
functions are obtained. The long-time behavior of these expressions is discussed in detail and in various
physical regimes.
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One-dimensional reaction-diffusigiRD) processes ahn- tion governing the dynamics of the model can formally be
teracting particleshave been extensively studied in the lastrewritten as an imaginary-time Scldinger equation for a
decade because of their relevance as examples of stronglppantum spin chain: & dt)|P(t))=—H|P(t)), where
correlated nonequilibrium systems and their connection withP(t)) =X, P({n},t)|{n}) describes the state of the system
experimental situationsl—4]. at timet (the sum runs over all the-2configurations{n}).

Among the RD systems, the “diffusion-limited with pair Performing a standard Jordan-Wigner transformation and
annihilation and creation(DPAC) model [5-15 plays a then a Fourier transformation, th&ochastic Hamiltonian
particular role. In fact it is one of the rare nonequilibrium can be recast in fermionic representatiof4—12. We also
models for which it has been possible, in some special casegefine the “left Vacuumn(ﬂzg{n}({n” The probability
to compute somelynamical correlation functiondn addi- : T
tion this model carries valuable information for various ex_conservatlon y|eld$X|H—0. : S
perimental situations where particles diffuse and dimer ca Exact solution of the DPAC model is possible in tiee-

) i . Bermion case[4-12], and therefore, withy=e+¢€' —(h

be adsorbed/evaporatdd,2]. Despite the interest in the b has to imoose=0
DPAC model, not all the desirable information on the corre-+ ), one has POSg=". L
lation functions was available so far. In particular consider-, Hereafter, e always consider _that the_ constrattd is

) : fulfilled. In this case, the stochastic Hamiltonian reads
ably less results are available for tHeomplet¢ DPAC
model than for the “diffusion-limited pair annihilation”
(DPA) model(where there is no pair creatipn

Recently, there has been a regain of interest for the study _ .
of the DPAC model because its possible application in vari- t2sinq(eaqaqte'a_qaq)]+ €L, @
ous fields such as the experimental study of the photogrowth T ) .
properties of long-lived midgap absorption band irMa< where aq and aq are usual fermion operatczrs. In addition,
chain[2] and in interdisciplinary studig8]. In particular, it ~ @(q)=c—bcosq+ivsing, with b=e+e€’, c=e—€’, v
has been shown that the autocorrelation functions of thesh’—h, andg===(21-1)/L, I=1,2,...L/2.

DPAC model provide valuable information on the relaxation ~We consider translationally invariant and uncorrelated
of biological dimer adsorptiofi3]. In this work we consider random initial stategpo) with an even numbeN of par-
the (free fermion DPAC and DPA model and obtain results ticles, of densitypo=N/L, i.e.,
that remained inaccessible so far. In particular, we explicitly 1-po
compute the exact and complete expression of the noninstan- |Po>:(
taneous two-point correlation functions for random initial Po
conditions and then analyze the long-time behavior of th
latter.

We consider a periodic lattice &f sites(without restric-
tion, L is assumed to beven on which an even number of ° ; .
(classical particles interact. Each site is either empty or oc-D) allows_the computation the following zero-time correla-
cupied by a particle at mogbecause of theard-core inter- 0 [9], With w=po/(1=po):
action). When a particle and a vacancies are adjacent to each _ w2 cot(q/2)
other, the particle cajumpto the right with a rateéh’ or to <X|aq’aq|P0>E<aq'aq>(0):#
the left with a rateh. When two particles are adjacent, they 1+ u”cot(al2)
canannihilate in pairswith a ratee. In addition, when two 1
vacancies are adjacent, mair of particles can be created  (aq,aq," - -ann_laq2n>(0)=n—' > S(”)<aqﬁ(1)a%(z)>
with rate €’. We now adopt the so-callestochastic Hamil- T

H= lag+o*(q)al a_
qzo[w(maqaq w*(qa’a_q

®L

%rom the fermion reformulation, an important property of the

left vacuum follows:(y|a}= cot@2)(x|a_q [4.8,9.
The free-fermioncharacter of the stochastic Hamiltonian

q,-4q’>

tonianformalism(see, e..g.L4] 'and referenceg thergirmo do. X(0)-- (2, aq_. )(0),
this, at each of thé lattice sites, we associate to a particle m(@n=1) "a(2n)
(vacancy a spin$ down (up). In so doing the master equa- 2
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where the sum is over all the permutationsof the in-

dices {0;,02, ....0e), With the constraints 7(1) (N, (t)- N (tw)= , > , exdi(q—dp)is
<mw(2),...,m(2n—1)<w(2n). Each permutationr has a A1.01: - - lm A
signatureS(). (=) ]

It is advantageous at this point to introduce the “pseudo- mAmiim
fermion” operators [6] &4=a ' cosfag+asin an and ><<a$1(t1)aq1(t1)' . -agm(tm)aqrrn(tm)).
gq —acosaqanra 1sing @ g, With 6_,=—6,. Although
they arenot adjointeach othef6], these operators fulfill the (6)

. . . . +4_

canonlool antlcommotatlon relatr:n{tfq,fq,}—éq|qr. The (i) One has then to rewrite the expressi@) in the
probability conservation yieldéy|&; =0 [6]. pseudofermiofianguage. This was achieved with the help of

It has been showh6] that if one chooses the following
parameters tan(@,) =2./ee’sing/(bcosq—c); a’=\/€'/e, alaq =cos6, costy & £q1— COSHq SIN O &7 gfq,
the stochastic free-fermion Hamiltonidd) is diagonal in . _ . N
the pseudo-fermion representaton and readd —SiNfqCoSby & _qé—q tSinbgsinbq & _q&_
qukqgg &q, with )‘q.: b—¢ cosq+iv sinq._Because of this (7)
diagonal representation, the pseudofermlon operators evolve
according toy(t) =e *a'¢,(0) and&, (t)=erd'¢; (0). (iii) Using the fact thatH is diagonal in the (pseudo-

Using the fact that the pseudo-fermion operat@crare fermion) representatiofwith Eq. (7)], one extracts the time
linear combinationof fermion operators, anda], and us- ~ dependence of terms appearing in the pseudofermion rewrit-
ing the expressior(2) as well as the property of the left ten expressioit6). As an example, we have

vacuum, it follows that
<§q1(tl)§qi(t1) to gqm(tm)gqr’n(tm»

COSf, COSOy/
<§q§q’>(0) —<aqaq >(0 :exq_()\ql"')\qi)tl_ T _()\qm'i')\q;n)tm]
a
+a?sinfggsindg(a’ a’ ,)(0) X(&q, 80, " Eapar)(0). ®
+sin 6y, cosaq<aan_q,>(O) (i\() Finally, the zero-tim_e correlatiort functions of pseudo-
fermion operators appearing on the right-hand githe) of
+sind, cosﬂq&aT_qaq,)(O). 3 (6), after the stepsi)—(iii), are computed with help of the
o Wick factorization(5) and using(x|; =0
For the sequel it is useful to computeféq)(0) This general four-step procedure provides a systematic
E<X|gq§—q|po> dq'—q- Therefore, we introduce the follow- method to obtain explicitly, starting from homogeneous ran-
ing function: dom initial conditions, the multipoint and multitime correla-
tion functions of the free-fermion model under consideration
f(@)=(&qé-¢)(0) here. It is, however, important to notice that the computation
2ev, co2(q/2) of each of these quantities leads to rather complicated tech-
= vy— # €V d [1+ 202+ 212 nical difficulties. Let us mention that using the domain-wall
ue ) d duality and with help of the generating function studied in
1+ ——vg |Re(Aq) [10], we can compute the stationary multipoint correlation
€ functions of the DPAC model from the spin-spin correlation
where v = Je'lecot(ql2). (4)  functions of the one-dimensional Ising model with a gener-
alized (biased Glauber’s dynamic$6,10,14. In fact we can
One can also check that show (n>--->jq) that (nj ---n; )()=[p(=)]™ [16],
L where p(©)=€e'/(\Je+ \J€') is the stationary density of
o _ = particles. In addition, for a homogeneous system with initial
(£q,7"~£q,)(0) 27:' SN a0 80,0 densitypo= 1/2 of particles, because of the quadratic form of

the generating function, the expressions of spin-spin correla-
%(0)- '<§qﬂ(2n71)§qﬂ(zn)>(o)’ (3 tion functions of the dual of the DPAC model are Pfaffians
[10,16. In this case it is, therefore, possible, via the domain-
where we adopted the same notations as in(Eqg. wall duality [4,10], to sort out the technical complications
Let us now sketch a four-step procedure that allows usind explicitly compute the instantaneous multipoint correla-
to compute explicitly the multipoint and multitime  tion functions. As an example for the DPA modet=(h
correlation  functions  (n; (t;)---n;  (ty- l)njm(tm)> +h’, € =0), the long-time behaviorbt>1) of the three-

—<X|n e H(ti—t5), nj, X —H(ty-1—tr)In; € Him o). point correlation functions reads(@(t)n;., (t)n;., (1))
(i) One first has to write the expression of the correlatron~(1+8{r +rqry[5(ro—rq)— 1]})/128077(ct)3 with 1,
functions in the Fourier space. >r, [16].
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Because of the general technical problems inherent to the Another important problem where tl{stationary multi-
computation of the correlation functions, the above-point correlation functions of a free-fermion model play a
mentioned systematic four-step procedure is, in particularelevant role is the computation, for tigestate Potts model
useful to take into account random initial conditions, whichin the zero-temperature Glauber dynamics, of the exact per-

affect the long-time dynamics of the nonuniversal relaxationsiStence ex : i =
ponent that gives the fraction of spingq),
(when all the rate, h’, e ande’ are>0, see below . . ~
To illustrate the difficulties that appear in computing the Which have never flipped18,19. To computep, (), the

multipoint and multitime correlation functiondrom uncor- ~ authors mapped the problem onto an exactly solvéoie
related but random initial statesas well as their importance, fermion RD model: A< @A (with reaction rate 1) and
one can point out the work of Derrida and Zeifak], where AA— A (with reaction rate 2). In addition it is assumed that
these authors obtained the universal distribution of domair® “source” ensures that the origin of thiperiodig lattice is
sizes of one-dimensional Potts model with zero-temperaturdlways occupied. Starting from an uncorrelated but random
Glauber dynamics. This was achieved using the properties dhitial state (with the initial site always occupigddenoted
coalescing random walkers to compute the probability ofp”(0)), the problem of finding, (q) reduces to the com-

having the same value at tintefor N spins located alN ; ; . .
distinct and ordered sites, which is related to the di:stributiorPut[atlon of the following multlp_omt c?rrelathl8]. pu(@)

of domain sizes. The authors also studied the domain-walls Mi-=(0[(1+ay)---(1+a)e " [P"(0)), where the
dynamics and, thus, considered the followifigge-fermion ;'S are fermion operator$0) is the vacuum;/0)=0) and
RD model A« A, AA—A, and AA—JJ, with reaction H’ is the stochastic Hamiltonian associated to RD model
rates 1, q—2)/(q—1), and 1/— 1), respectively. For this Cconsidered if18,19. _

RD model, with randongbut uncorrelatedinitial conditions, To be specific we now focus on the computation of the
the authors of17] computed the density of particles and the COnnected noninstantaneous two-point correlation functions
instantaneous two-point correlation functions. It has to be?f the DPAC model for random initial conditionp,).
noticed that there exists a similarity transformatisae, e.g., Following the above-mentioned four-step procedui-

[4], and references thergithat maps the DPA model studied (iv)], adopting the notatiog,=b— c cosq, we obtain, in the

here(with €' =0) onto the RD model considered fih7].

Cr(ttg)=(nj; (t+1to)nj(to)) — p(t+1to)p(ty)
2

=dq ~.sing
=ee’' —singr—uvt sing]— e~ %d
€€ (JO - sinar—utsing] S

X —sz(qlz) e 4’q‘) ( fwd?q cogqr—ut Sinq]—co§(q/2) e ¢qt
0

bq

cos(q/2)
¢q

mdq :
X f—sw{qr—vtsmq]
o T

’7T

X

sirf(q/2)

X ry

qu . .
O?sw[qr—v sing]

=d
X f(q)e“”q(“mo)) ( f ?qsir[qr—vt sinq]
0

i 2
xwf(q)e—%(t“to)) :
bq

In this expression  p(t)=e'I(Je+ Je)
—ee' [§(da/ m)[sin@)/ ¢glf(q)e 2% designates thétrans-
lationally invariani density of particles at timé The latter
has been previously studigfor the initial states|pg)) in
[10].

+4ee’(

f(q)e—¢q(t+2t0)> _ /66’(

=d
f(q)e‘¢q(t+2t0)) —4ee’( J ?qsir{qr—vt sinq]
0

sir? (g/2)

thermodynamic limit [ —):

mdq :
—cogqr—utsing]
0o

7d sin
+26'\/66'<f —qsir[qr—vtsinq]—qe“/’q‘)
o ¢q

7dq c—bcosq
—cogqr—uvtsing]————e~ %d
i ¢qr—otsing] S )

sin =d sin
—qcos{qr—vtsinq]—qf(q)e‘¢q(‘+2‘0) —2ey/e€’ f —qsir[qr—vtsinq]—qe‘%t
o d’q T ¢

0 a

cos(q/2)
¢q

=d
f(q)e‘fl’q(‘”‘o)) — ee’( j ?qcos{qr—vt sinq]
0

(€)

Equation(9) is the main result of this work and provides
the complete expression of the noninstantaneous two-point
correlation functions of thdfree-fermion version of the
DPAC model. From the Ilatter, it is clear that one
can also obtain thinstantaneous$wo-point connected corre-
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lation functions C,(t=0,t;>0), ar_wd one can check, as We_45/tf(lu,r,6'€’)
expected from the general properties of the DPAC mpglel C(t)= AT

that the latter do not depend on the bias In addition, 4(mct)
it is clear that the expressia®) also includes the instanta- ) . )
neous and noninstantaneous connected two-point correlatighere the rather complicated expression of the amplitude
functions of the DPA model, where'=0 andb=¢>0. 7 (€€’ reads

It is worthwhile to notice that the noninstantaneous correla- A_C

tion functions(9) [with t>0 andv # 0] depend on theign f(,u,l’,é,6/)2%{2;1,2(66,)3/2—26/2 [e€’ (pur)?

ofr:  C.(t,tg;v)=C_,(t,ty;—v). Conversely, thénstanta- Auc\ee'

neouscorrelation functiongwith t=0 andty>0 in Eq.(9)] , — sem 2 g -

do not depend on thesign of r. Let us also stress the fact tee' (Ve et u2roVe" e—3\ee'])}

that setting in Eq.(9) w=« (i.e., pp=1), ©=0 (i.e., pg

, (12

=0), oru=1 (i.e.,pg=1/2), we recover results obtained in — i{@wz(efrwz
[6-12. 12e€'?u?
To proceed with a long-time study of the expressién ) - . -
we have carried out a systematic asymptotic expansion of the —p¥(2r2+1)e'?ee +e€' (3e" e
integrals appearing in E¢9), in which the smalt regime of +Mz[(2r2+1)\/m_9@])}_ (13)

integration dominates. Hereafter, we analyze two different
regimes and distinguish the case with pair creafi@, with It is remarkable that conversely to timstantaneousor-

€'>0 andc+0) from the case with (,)nly(asymmetria: dif-  relation functiong12), which amplitude(13) depends on the
fusion and pair annihilatiofi.e., with e’ =0 ande>0). The  iqitial state through the parametexQu<<, the long-time

cases where=0 (i.e.,, e=€’, h=h’, and e=¢€¢’, h+h"  pehavior of the noninstantaneous correlation functitk®

=2¢) have already been studied [i]. do not depend orp,. This is due to the fact that the second
Regime 1i) We first consider the case wheee>0 and  term of Eq.(9) doesnot depend orf(q).

€>0 in the regime wheret,etg>1 ande’t,e'ty>1 [with Regime 1ii) Another interesting asymptotic regime to in-

©>0]. In this situation the main contribution to the nonin- vestigate is the one first studied by Torney and McConnell
stantaneous correlation function arises from the second terbd 5], where one considers initially veryzdllutetzj systemzs, i.e.,
on the rhs of Eq(9). We, thus, obtaing+ 0, ¢>0) po~p<1, but keeps the productepgt, eppto, € pot,

€' pét, fixed and finite, withet, ety>1 ande’t,e'ty>1 [and
t>0].

In this regime, the noninstantaneous two-point correlation
functionscC, (t,ty) are still dominated by the second term of
It is clear from Eq.(10) that in this regime the late behavior EQ.(9) and, thus, the asymptotio ¢0) decay ofC,(t,t,) is
of the noninstantaneous correlation functiahét,ty) only  still given by Eq.(10).
depends on the timé¢ (and not onty). We notice the The situation is, however, different for thestantaneous
nontrivial effect of the biasy#0 through the parameter correlation functiongbecause the third and fourth term of
u. In the absence of the bias and fore« (i.e., for the EQ. (9) depend onf(q)]. With help of Eq.(11), we obtain
autocorrelation functionswe obtain: C,(t,to;v=0)~(e/  (r<«)
32me’){exd —4e't]/(ct)?.

In this regime we now focus on the long-time behavior of C.(t)~ p3e—4e't r /
the instantaneouscorrelation functions’,(t) (obtained set- (=P Glpo.T€e’)
ting t=0 in Eq.(9) and relabeling, as the variable). The
casespp=1 and py=0 having been studied previously
[C,(t;po=0,1)ce %€t =" 1/ =3/2 for py=1 andv’ =1/2
for po=0 [6,12]], here we focus on the case of random ini-
tial states, i.e., with @ <o [and po#p(=)=\e'/(e'  \where erfcg) denotes the usual complementary error func-

+ \/E), which would Correspond to theivial case where tion. The amp"tud@(po’ris’e’) has the fo”owing form:
f(gq)=0]. The main contribution ta’,(t) comes from the

third and fourth term on the rhs of E). Introducing the g(po,r,e,e’)E(AO—CO)[p52—4r2+ ele']

6(1_ u)efuf4e’t

Tome (@07 u=(r—vt)%/ct. (10
T E

Cr(trto)%

1
2(p3mct)t?

— e*iterfc( 2p01/ct) |, (14)

parameters ) ,
—Bgve'le[r/pg—10r(2r+1)— el €e'].
4Rg=—Vele'(1-0)?¢""Y Bo=—(1-¢¢ 0 : (15)
— Ve e
_ ’ 2¢r—1. —

ACo=Vele(1+ D75 1= Je+ e (D We now pass to the case of the DPA model, whefe
=0 andb=c=€>0. Again, we distinguish two different

we obtain ¢ <) regimes.
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Regime 2i) We first consider the regime whelné>1 and  where theanticorrelatedcharacter of the DPA model clearly
bty>1. In this situation, the main contribution to the long- appears.
time dynamics arises from the fourth and the last terms of Despite the fact that the parametere— e’ can take

Eq. (9) and we obtain negative values, so far we have always considered the case
F{ (r—ovt)? to+t wherec>0. With help of the similarity transformatiois
exg— ———

bt 2ty+t =HJ-L:10JX, whereo is the usual Pauli’s matrix acting on the
Gt e’ =0)~ 27 Vit + 2tg) sitej, we show that the case where 0 is directly related to
° the one where>0. In fact, according ta3, the (free fer-
1=/ t e[(rvt)Z/bt]tO/2t0+t)_ mion) DPAC stochastic HamiltonianH=H(b,c,v) is
t+2t mapped ontd3H (b,¢,v) B~ 1=H(b, —¢,—v) and the initial

(16)  state|poy) is mapped ontaB|py)=|1—py). Therefore, we

. . havecr(titO)b,f’(v:,fu;pozCr(tvtO)b,’(v:,v;lfpo'
It has to be noticed that, according to E@6), whenr>0 | i thi K ketch a f ; d
andv >0 (or,r <0 andv <0), C,(t,tg) has a local maximum n summary, in this Work we Sketch a four-step procequre

(a “peak’) at timet,=r/v. Whenbtsbty>1, we recover that allows the explicit computation of the multipoint
the resul{7,11] ¢, (t '?O'e’='0)~t0exr[—(?—vt),zlbt]IZWth and multitime correlation functions of the free-fermion
1 r L L] .

In this regime, the main contribution to tiestantaneous PPAC model starting from randonfuncorrelatedl initial
correlation function arises from the last term of Eg), and states. We then specifically compute the noninstantaneous/

we obtain the following result: instantaneous two-point correlation functions in the presence
) as well as in the absence of the pair-creation term. When all
Ci(t;€'=0)~—1/4mbt, (17 the reaction rates are positive, the dynamics turns out to be

where the minus sign manifests the fact that the long-tim nonuniversal and the long-time relaxation is exponential

dynamics of the DPA model is dominated amticorrelation ?W'th a subdominant a p(_)wer-law fz_ic)mthe z_amphtude of
due to the pair annihilation of the particles. The res(g  N€ instantaneous two-point correlation functions depends on
and (17) and the fact that the latter deot depend onpg the initial denSIIpr and is expllcnly determined. In the
confirm, for random initial case, the universal character oftoSence of the pair creation, i.e., whef=0 and h+h’
the DPA model in this regime. =¢€>0, the dynamics turns out to be univer§althe regime
Regime 2ii) We now consider the low-density regime of Wherepg is finite andbt>1, bty>1) and there is a power-
the DPA model, wher@y~u<1 andet,et,>1, with epSt law relaxation. The effect of the bias=h’—h+0, only
andep?t, finite. Also in this regime the main contribution to @ppears in the noninstantaneous correlation functions and
Ci(t,to;€' =0) arises from the fourth and the last terms of can be absorbedor ¢’=0) in a Galilean transformation, as
Eq. (9) and one has the long-time behaviar=0 andr noticed in[7,11] in considering the DPA mode(in these

<) previous workse'=0).
- ) To close this work, it is natural to wonder what is the
Cr(tlo; €' =0)~po exH 2ph(t+2to) ] effect on the dynamics of the restrictign=0. In fact, it is
1 by now well established on the basis of numerous consistent
Xerfquom]| numerical result$3,6,11,14, and from comparison with ex-
V2mht perimentd 1,2], that the results obtained for the free-fermion

version of the DPAC model give gqualitative picture that is
still valid when y#0. One can, therefore, expect that the
results obtained in this work could have a general validity

><erfc[2p0‘/b(t0+t/2)]}_ (18 and, in particular, a direct relevance for recent interdiscipli-
nary studieg3].

— poexd 2pab(t+2tg)]

For theinstantaneousorrelation functions, we obtain the We are grateful to P.-A. Bares, M. Michalakis, and L.
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